
 

 

The Teranet–National Bank House Price Index TM 
 

1. INTRODUCTION 
 
The Teranet – National Bank House Price IndexTM is an independently developed representation of the rate of 
change of home prices in six metropolitan areas, namely Ottawa, Toronto, Calgary Vancouver, Montreal and 
Halifax. The metropolitan areas are combined to form a composite national index. The indices are estimated on a 
monthly basis by tracking the sale prices of condominiums, row/town houses and single family homes within 
these six metropolitan areas.  
 
The estimation of the indices is based on the assumption of constant level quality of the single family dwellings 
and that any price changes are driven only by market trends. Thus, the indices attempt to reflect market prices by 
minimizing or eliminating the influence of any changes in the physical characteristics (e.g., renovations) of the 
houses. 
 
The estimation of the indices is based on the “repeat sales methodology”. This methodology was originally 
developed by Bailey, Muth and Nourse as a method of avoiding the heterogeneity issues in housing markets. This 
methodology was extended by K. E. Case and R.J. Shiller, the foundation of which is that each property 
contributing to an estimation of aggregate home value change must have been sold at least twice in a particular 
time frame. The two sale prices are assumed to define a linear change of the value of the property between the 
two sales dates. 
 

1.1 Index Estimation 
The Teranet-National Bank House Price IndicesTM are estimated by tracking the registered home sale prices over 
time. At least two sales of the same property are required in the calculations. Such a “sales pair” measures the 
increase or decrease of the property value in the period between the sales in a linear fashion. The fundamental 
assumption of the constant level quality of each property makes possible the index calculation but imposes 
difficulties in filtering out those properties that do not satisfy it. This difficulty arises from the lack of information 
about the property, and only the amount of price fluctuation versus time may provide an indication on possible 
changes in the physical characteristics of the property or non-arms-length transaction. Such properties may not 
be included in the estimation process. 
 
Any property that has been sold at least twice is considered in the calculation of the index, except those that may 
be related to influences from within the property (endogenous factors): a) non-arms-length sale, b) change of type 
of property, for example after renovations, c) data error, and d) high turnover frequency. Once the unqualified 
sales pairs have been eliminated, the estimation of the index in a certain jurisdiction can be initiated by casting all 
qualified sales pairs in a linear regression algorithm. 
 

1.2 Weighting of the sales pairs 
The most challenging procedure in the index estimation process is the assignment of weights to each sales pairs: 
not every sales pair should contribute the same to the index calculation. There are several factors that can be 
considered, each carrying different levels of uncertainly, primarily due to lack of information. 
 
One attractive method of assigning weights is based on the statistical distribution of the sales pairs in the 
geographical area of interest. This can be done by calculating the average annual percentage change of the price 
of each property and then “tallying” all changes in different classes. This allows the determination of the 
experimental probability distribution of the sales pairs (also known as probability histogram). Properties whose 
annual percentage change is more frequent in the set are most probable to occur and thus are assigned higher 
weight than those that belong to a class with lower count of properties. The probability measure is thus the weight 
that can be applied. This methodology can also be used to filter out sales pairs that show highly improbable 
annual sale price change. In this case, a statistical methodology may be applied to eliminate outliers, based on 
the type of the statistical distribution of price changes. A null hypothesis for testing can be formulated for this 
purpose. 
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Sales pairs may also be weighted based on the time interval between the sales. A property with a long time 
interval is more likely to have experienced physical changes and thus its sale value may be reflecting non market 
trends. Such properties may be weighted less than the ones sold in a short time interval. This is known as time 
interval weighting and varies from one geographical area to another [Case and Shiller, 2007]. The need for “time 
interval weighting” can be identified by performing first level estimates of the indices and then examining whether 
the residuals (errors) of the linear regression increase with the time interval. The change of the residuals as a 
function of time is known as heteroskedasticity and indicates the presence of a trend in the errors as the time 
interval between the two sales increases.  
 
It is noted that the above weighting schemes may not be exactly representative of the reality because there are 
many unknown factors. However, they comprise good initial estimates, which can be improved through iterations 
of the estimation process. The simplest case scenario is the use of equal weights in the first run of the estimator 
followed by an iteration that makes use of a new set of weights that are inversely proportional to the square 
residuals. It is clear that the residuals of any estimation process depend on the initial weights therefore, it is 
important to have as realistic weights as possible right from the start, rather than using equal weights and then 
iterating the solution using the inverse residuals as weights. 
 

1.3 Index calculation methodology 
The repeat sales index construction is based on a simple linear regression model, whose regression coefficient is 
the reciprocal of the desired index. The fact that there are more observations (sales pairs) than unknown 
regression coefficients, an overdetermined system of linear equations is formed from which one can obtain an 
optimal solution by using for example the method of least-squares (LS). 
 
The sale prices are affected by factors, other than the property itself such as, financial market trends, consumer 
price index, and many others that are called exogenous factors. The set of sales values (observations) is likely 
correlated with the errors and the LS estimation procedure cannot be applied in principle. Other methods, such as 
the Instrumental Variables (IV) may provide consistent estimates of the indices. Details of the different estimation 
algorithms are provided in Section 3.   
 
The calculation of the indices is carried through by assigning a base period for which the index is set to unity (or 
100). All sales pairs, prior to and including the base period, are retrieved from the database, then analyzed, 
filtered, and subsequently given an initial probability weight before they are cast into the linear regression 
estimator. We apply three different estimators, namely least squares (LS), instrumental variables (IV), and 
generalized method of moments (GGM). These estimators are designed to calculate all pre-base period indices 
simultaneously. The “simultaneous” nature of the calculation indicates that the interrelationship of the monthly 
indices is considered as it should. This is known as the pre-base index estimation process. 
 
Once the pre-base regression coefficients have been estimated they are used in the post-base index calculation 
without any changes, i.e. they are kept constant. The post-base calculation is performed monthly, as new data 
come in. This implies that the post-base indices are dependent upon previous indices but they are independent 
from all future ones. In order to maintain accurate estimates of the market trends, the index of the current month 
is estimated simultaneously with the two previous monthly indices. Usually, but not exclusively, a simple average 
of the three monthly indices may be used as an estimate of the index of the current month whereas the indices of 
the two previous months are dropped. 

 

1.4 Refinement of the weights 
After their initial setting, the weights of the sales pairs can be refined by using for example the IV estimation 
process in an iterative approach. The initial weight matrix is used to run the IV estimator which produces 
residuals. The residuals (errors) represent the misfit of the data to the linear regression model. The square 
residuals may be taken to represent the variance of the misfit. A large variance indicates that the corresponding 
sales pair does not fit well to the model, or it is inconsistent with the rest of the sales pairs and it likely has a large 
error. In a first iteration of the solution, the initial weights are replaced by the reciprocals of the square residuals 
and new indices are calculated. This iteration can be repeated a few times until a desirable convergence has 
been achieved. 
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In order to test whether there is a need to apply interval weights, i.e., when there is heteroskedasticity present, a 
least-squares (LS) regression and its statistics can be used [Baum et al., 2002; Wallentin, and Ågren, 2002]. First, 
the residuals from the LS estimator are tested for normality. If the statistical test shows that the residuals are 
normally distributed, it can be taken as a first crude indication that heteroskedasticity is not present. A more 
rigorous approach for heteroskedasticity testing is to use available statistical tests, e.g. Breusch-Pagan test, 
[Breusch and Pagan, 1979], White test [White, 1980], or similar tests that detect trends in the square residuals 
versus time interval. If such trends prove to be statistically significant, then heteroskedasticity is present and 
needs to be considered in the estimation process.  
 

The methodology of heteroskedasticity testing can be further expanded to test for residual outliers i.e., residuals 
that are statistically inconsistent within the set of residuals. Sales pairs whose residuals are flagged as outliers 
can be down weighted before the iteration of the solution is attempted. 
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2. FILTERING AND WEIGHTING PROCEDURES 
 

Filtering and weighting of the sales pairs are performed in different stages of the estimation process and are 
based on the statistics of the sales pairs and their internal consistency. Additional subjective filtering may also be 
applied by an experienced analyst who has a good knowledge of the housing market. Such subjective 
“algorithms” or “filtering parameters” can be selected before the start of the estimation process.  
 
The filtering and weighting process is divided into two main stages, namely: 
 
(a) Pre-analysis stage: sales pairs are examined and analyzed before they are cast into an estimation process. 

During this stage, the data (sale prices) and their statistics are examined in order to set initial threshold values 
for filtering and weighting. 

 
(b) Post-analysis stage: after the data have been cast into a weighted least squares (WLS) and instrumental 

variables (IV) estimators and indices have been estimated, the covariance matrices of the estimated 
parameters and residuals are examined and analyzed. At this stage, rigorous statistical tests are performed to 
test the sales pairs against basic and simple hypotheses (also known as the Null hypotheses). Such tests 
reflect the internal consistency of the data from the point of view of how well they fit the regression model. 
Results from these analyses are fed back into the estimation process and final estimates of the indices along 
with their formal error estimates are obtained. On many occasions, iterations are required between the pre- 
and post-analysis stages. 

 
What follows is a detailed description of the approaches and algorithms developed and implemented in relevant 
software. Several test cases are examined and pertinent numerical results are presented to accentuate the 
effectiveness of the methodology followed.  

 

2.1 Pre-analysis of the sales pairs 
The pre-analysis stage is entirely based on the original data set of sales pairs. Various statistical procedures of 
classification and testing are followed. Depending on the number of sales pairs in the original data set (sample 
size) one or more pre-analyses procedures as described below, may not be applicable since they may possibly 
become inconclusive with poor performance. Like in all statistical analyses approaches, care must be exercised 
when applying and interpreting statistical methodologies and results.   
 
Property Type: The index calculation may only be based on one type of property, for example single homes, or 
condominiums or other, or a combination thereof. The decision to use a particular type of property or properties 
constitutes the first rudimentary but important filter of the sales pairs. In small jurisdictions, this filter may 
significantly decimate the data set. Statistically small number of sales pairs may result in highly inconsistent 
indices. Subsequent analyses may suggest the inclusion of additional types of properties to increase the number 
of sales pairs.  
 
Sales Pair Time Interval: To avoid certain types of transactions, a sales pair whose corresponding dates of sale 
are six months or less apart are excluded from further consideration.  
 
Extreme Sale Prices: In order to keep the index estimates consistent, a simple filter is applied to eliminate either 
very low or very high sale prices. This eliminates properties at both ends of the scale (shacks and mansions) that 
may not follow market trends. The price limits may vary from region to region. These values can either be set 
based on statistical analyses (usually not available) or on experience. The latter is most often followed. 
 
Extreme Price Changes: This step concerns the detection and elimination of sales pairs that show extreme price 
changes. It is based on the statistical distribution of the price changes in the set. It involves the following: 
 
(a) Calculation of the percentage change per annum of the sale price of each pair. Properties whose values 

change more than a certain set level per annum are eliminated from the set. The cut-off value may vary and 
can be determined more effectively by a feedback loop (iteration procedure). This can be based primarily on 
statistical considerations (see below). 
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(b) The filtered pairs from step (a) are organized into classes based on their annual percentage change, by 
applying the usual statistical tools, e.g. the probability histogram. The number of classes in the histogram is 
analogous to the size of the sample data set but does not usually exceed 50 classes. The usual, low order 
experimental moments of the histogram (e.g. mean, variance, skewness and kurtosis) are then calculated.  
 

(c) The null hypothesis H0 of normality of the distribution of the sales pairs is invoked and subsequently tested by 
using the chi-square goodness-of-fit test. This test uses the following statistic  
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where index   indicates the class of the histogram and N is the number of classes. Variable a is the normalized 

class count of class   in the histogram, and e  is its corresponding normal distribution ordinate value calculated 

from the normal distribution ),;( 2sln   using the mean and the variance of the sample (set of annual percentage 

changes). The above statistic y follows the chi-square distribution )3;(2 n of n-3 degrees of freedom 

because the mean l and variance
2s of the sample (here, the mean of the percentage changes of all properties 

along with their variance, respectively) are unknown and are estimated. The loss of the third degree of freedom is 
due to the selection of the number of classes in the histogram. 
 
(d) If the chi-square goodness-of-fit test passes, the annual percentage changes of the pairs are considered to be 

normally distributed and confidence intervals are used to eliminate pairs whose annual percentage changes 
are outside these limits. If the chi-square goodness-of-fit test fails, the annual percentage changes of the 
sales pairs are assumed to follow an alternative distribution; in such case, we cannot set confidence intervals 
based on the normal distribution but we can repeat step (a) above by setting slightly tighter limits. However, 
the intent is not to render the distribution to be normal. Tests with many different data sets from different 
Canadian cities indicate that the annual percentage changes, follow the normal distribution right from the 
start.  If in the end the statistics show that the sales pairs are not normally distributed, no further measure is 
taken to eliminate pairs. 
 

(e) The new “clean” set of sales pairs (as achieved from steps (a) through (d) above) is used to generate, once 
again, the experimental probability histogram using the same number of classes as in step (b) above. Based 
on this histogram, each of the sales pairs is assigned an experimental probability that serves as the initial 
weight in the estimation process.  

 

Step (a) above can be bypassed altogether. In this case, a first pass through process (b) and (c) can eliminate 
extreme values. Subsequently, iteration through the same steps can filter effectively the bad pairs and assign the 
first weights. 
 
Heteroskedasticity in the Sales Pairs: Heteroskedasticity (autocorrelation) is the phenomenon of non-constant 
variance in the data. In the housing market, the time interval between the two sales may introduce 
heteroskedasticity: The longer the time interval between the two sales, the higher the error in the sales pairs may 
be expected. This means that properties with higher errors should be weighted less. Possible heteroskedastic 
models have been suggested [e.g., Case and Shiller, 2007] that provide a scale factor by which the initial weights 
may be multiplied to remove the effect of time. However, care must be taken when applying such rather arbitrary 
models.  
 
In our estimation process we do not consider heteroskedasticity, at least in the first run of the data through the 
estimator(s), for the following reasons: 
 
(a) We do not have any evidence about the degree of heteroskedasticity present in the data. The application of 

an arbitrary model at the initial stage may in fact at times introduce heteroskedasticity where it does not exist. 
Over- or under-correction of the weights is as undesirable as ignoring it. 

 
(b) The experimental probabilities that are used as initial weights in the estimation process, in fact account, to a 

certain degree, for heteroskedasticity that may exist in the data. Even if this account is only partial, any 
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residual heteroskedasticity may be weak to significantly influence the final index estimates. By the same 
token, if residual heteroskedasticity is still present, it can be detected and accounted for in the estimation 
process by using appropriate statistical tests (see Section 3.4). 

 
(c) The most important reason for not accounting for heteroskedasticity in the data in the pre-analysis stage is 

however, the fact that we can account for it more precisely through its detection and estimation after the first 
estimation process is completed (in the post-analysis stage). We follow rigorous statistical tests on the 
estimated residuals that allow the detection and estimation of any heteroskedasticity present. If present, the 
estimation process is repeated with refined weights derived from the actual heteroskedasticity present. This is 
indeed a rigorous approach and it is detailed below.  

 

2.2 Post-analysis stage 
The post-analysis stage is followed after the pre-processed or “clean” sales pairs have been cast into a linear 
regression estimation algorithm. The analysis is performed on the estimated regression coefficients (solution) and 
estimated residuals. The former provides the degree of trust we can place on the results, whereas the latter tests 
for residual outliers. Both statistical tests require the calculation of the covariance matrix of the regression 
coefficients and of the estimated residuals. We note here that we calculate and use only the diagonal part of the 
covariance matrices. 
 
The first estimator used is the weighted least-squares (WLS). Although the WLS may result in inconsistent 
estimates for the indices due to the correlation between the errors and the regressors, it serves us in three 
important ways: 
 
(a) It is an efficient estimator by design. 
 
(b) Any statistical tests applied on the WLS results are equally valid for other estimators, such as the IV estimator 

(Wallendin and Ågren, 2002; Hansen, et al., 2006). 
 
(c) The degree of bias of the results may be used to assess the extent to which endogeneity is present in the 

data and the robustness of the IV solution. From several numerical tests we performed, we found that the 
WLS estimator biases the results by a mere scale factor. The bias varies as a function of the quality of the 
data and the choice of the base period. For the latter, the more sales pairs contain the base period as one of 
the sales dates, the smaller the bias. The IV estimator is not very sensitive to such a choice.  

 
What follows is a detailed description of the estimation processes, namely the WLS, the IV and the Generalized 
Method of Moments (GMM). WLS and IV may be considered as special cases of the EGMM estimator and as 
such it is important to examine it in more details.  
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3. THE LEAST-SQUARES ESTIMATOR 
 

The estimation of the indices is achieved by following the weighted least-squares (WLS) and the weighted 
instrumental variables (WIV) approaches. In our case, since the regressors (sale prices) are considered as pairs 
in the regression equation they are most likely correlated with the errors. In this case the ordinary LS (no weights) 
and to a large extend the WLS will furnish inconsistent but efficient (smallest variance) estimation of the unknown 
parameters (regression coefficients), whereas the IV process will provide a consistent but inefficient estimates. 
The problem of inefficiency can be remedied by forming a realistic weight matrix (as realistic as possible) in the 
pre-analysis stage, and refining it during the estimation process. This can be done by using the WLS as a 
diagnostic tool before the WIV process is used for the final estimation. Therefore, the estimation process 
contributes to the refinement of the weights and renders the final estimation efficient. 

 

3.1 The Regression Model 
 
The weighted least-squares (WLS) estimator guarantees that the residuals are minimum thus offering a minimum 
variance estimate of the unknown parameters. The repeat sales index construction is based on a simple linear 
regression model. The index is the reciprocal of the regression coefficient, hereafter denoted as . The general 
equation of the linear regression model in matrix notation can be written as  
 

UXβY  ,                      (2) 

 
where X is the n × m matrix of regressors (design matrix), Y is the n ×1 vector of independent variables, U is the n 

×1 vector of residuals, and β is the m × 1 vector of unknown regression coefficients. In the above definitions, n is 

the total number of sales pairs considered with no endogenous regressors. We note that the quantity of interest to 
us is the index at certain epoch which is the inverse of the regression coefficient. 
 
We denote the sale price of a property as Pij, where subscript i is the property identifier and j refers to the epoch 
of the sale. For the purpose of this study, we consider monthly sales and thus, j will denote the month of 
transaction. j=0 signifies the base period with respect to which the index will be calculated. Eq. (2) can be written 
explicitly as:  
 

0 ikikjij uPP  .                     (3)  

 

Eq. (3) is the most general form of the regression equation containing two unknown parameters, namely j  

and k  that is, the regression coefficients of epochs j and k, respectively. If any of the regression coefficients is 

known, either from previous estimations or it corresponds to the base period ( j =1 or k =1 for j=0 or k=0, 

respectively), then the corresponding product jijP   or kikP   becomes an independent variable and is moved to 

the right-hand-side (RHS) of Eq. (3). Note that these independent variables form vector Y (cf. Eq. (2)). If none of 

the indices is known, then the products jijP   and kikP  remain in the left-hand-side (LHS) of Eq. (3) as 

dependent variables, and the corresponding sale prices ijP  and ikP  (regressors) form the elements of matrix X. 

 

3.2 The Weighted Least-Squares Estimator 
 
When a-priori information on the weights of the pairs is available, then a diagonal nn weight matrix P can be 

formed with, for example, elements proportional to the experimental probability. Then, the WLS estimator is given 
by [e.g., Baum, et al., 2002]: 
 

PYXPXXβ  1}{ˆ
WLS ,           (4) 

 
where the prime indicates matrix transposition. The covariance matrix of the WLS estimator is given by  
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12

0ˆ }{  PXXC
β


WLS

,                      (5) 

 

where 
2

0  is the a-priori variance factor that is usually taken as unity. However, in the case of the housing 

market, we do not really know the scale factor of the weight matrix P thus, taking 
2

0 =1 will affect the scale of the 

covariance matrix given by (5). In such cases we use an estimate of 
2

0 , namely the a-posteriori variance factor 

2

0̂ that is given by: 

 

mn 


UPU ˆ'ˆ
ˆ 2

0 ,                      (6) 

 

where Û  is the estimated vector of residuals (cf. Eq. (2)) given by 

 

WLSWLS βXYU ˆˆ             (7) 

 

and n-m are the degrees of freedom of the system. Using 
2

0̂ in place of 
2

0  in (5) we obtain the estimated 

covariance matrix of the unknown regression coefficients  
 

12

0ˆ }{ˆˆ  PXXC
β


WLS

.                      (8) 

 

The estimated residuals Û have a covariance matrix given by 

 

})({ˆˆ 112

0ˆ XPXXXPC  
U

.         (9)  

 

The WLS residuals Û and their estimated covariance matrix 
Û

Ĉ  are useful because: 

 
(a) They can be used to flag any residual outliers that escaped the pre-analysis stage. Residual outliers in this case 

indicate misfit of a particular pair to the regression model, or equivalently, the pair whose residual is large is not 
consistent with the other pairs. The residual outlier can be detected by using rigorous statistical procedures 
(Hypothesis testing – see below).  

 
(b) The Covariance matrix of the residuals reflects both, the initial weighting of the data (at the pre-analysis stage) 

and the level of consistency of the sales pairs when considered all together in the regression model.  
 

3.3 Residual outlier detection 
 
The WLS estimation provides solution for the unknown parameters (regression coefficients), and the residuals 
along with their associated covariance matrices. The covariance matrices carry information about the statistical 
properties of the unknowns and residuals and as such, they are used to statistically evaluate the solution. 
 
The (estimated) covariance matrix of the residuals (cf. Eq. (9)) is used in the detection of residual outliers. This 
approach can be seen as an additional filter to the sales pairs in the post-analysis stage. Residual outliers can be 
traced back to their respective sales pairs, which can be either further down weighted or eliminated entirely from 
the set. Whatever the decision, the estimation process must be repeated (iterated) using the new set of sales 
pairs for the final solution. 
 
The chi-square goodness-of-fit test is applied to verify whether the normalized residuals follow the standard 
normal distribution (H0 hypothesis). This is an identical procedure to the one followed in Section 2.1, Eq. (1). The 

normalized residual iu~  corresponding to the sales pair i is given by [e.g. Vanicek and Krakiwsky, 1986] 
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̂

ˆ~  ,           (10) 

 

where iû  is the estimated residual of sales pair i and i̂ is its corresponding estimated standard deviation (from 

Û
Ĉ ).  

 
If the test passes, H0 is true and the normalized residuals follow the standard normal distribution. If the test fails, 
the normalized residuals most probably follow an alternative but unknown distribution. The latter case does not 
allow us to test for residual outliers and we must return to the beginning of the screening process (pre-analysis) to 
make sure that there are no bad pairs in the set or whether the weighting scheme corresponds to the data at 
hand. In the latter case, we may need to test for the presence of heteroskedasticity; we will come to this case 
later. If, this second screening of the sales pair does not render the normalized residual normal, we proceed with 
the estimation process without taking any further action. 
 
If the residuals pass the normality test we proceed to the next step, which is the detection of outliers. This is done 
by using the normalized residuals (cf. Eq. (10)) as the test statistics, and performing in-context testing of the 

residuals. The null Hypothesis H0 states that the estimated residuals Uui
ˆˆ   follow the normal distribution (as 

tested previously). Then the statistic iu~  (cf. Eq. (10)) follows the tau distribution of n-m degrees of freedom. The 

statistical test examines whether each normalized residual falls into a predefined confidence interval (e.g. 95%) 
defined by the tau distribution. If outside the confidence interval, then the sales pair i is flagged as an outlier, and 
can be either eliminated or its weight can be reduced. 

 

3.4 Heteroskedasticity Revisited 
 
As discussed in the previous section, one of the reasons that the residuals may not be normally distributed is the 
presence of heteroskedasticity. Even if the residuals pass the normality test, which is not very sensitive to the 
presence of heteroskedasticity, there may be a mild heteroskedasticity present. In both cases it is prudent to test 
for heteroskedasticity by applying for instance the Breusch-Pagan, or the White test [Baum, et al., 2002]. In fact, 
the WLS square residuals can be used for testing for heteroskedasticity [Breusch and Pagan, 1979; Wallendin 
and Ågren, 2002; Hansen et al., 2006]. 
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4. THE INSTRUMENTAL VARIABLES ESTIMATOR – IV 
 

Because there may be a correlation between the regressors X and the vector of residuals U, WLS (or simply LS) 
may give biased and inconsistent estimates for the regression coefficients. To remedy this, the method of 
instrumental variables (IV) can be used. IV is in reality a two-stage least squares estimator. Suppose that we have 

n sales pairs, and m unknown regressors out of which   regressors )( m are exogenous. We form the matrix 

of regressors (design matrix) X of dimensions mn  and the matrix of instrumental variables Z of dimensions 

n , which is constructed from X by collapsing its columns that correspond to the endogenous regressors and 

then replacing its non-zero exogenous elements with 1 or -1, if the sale price belongs to the “current sale date” 
and “previous sale date,” respectively. Note that the design matrix X is the same as in the LS case (cf. Eq. (2)). 
 

4.1 The Ordinary IV Estimator 
 
The consistent Instrumental Variables (IV) estimator is given by [e.g., Baum et al., 2002]  
 

YZZ)ZZ(XXZZ)ZZ(Xβ   111
}{ˆ

IV ,        (11) 

 
where all matrices have been defined previously. The estimated covariance matrix of the ordinary IV process is 
given by  
 

12

0

112

0ˆ }{ˆ})({ˆˆ   XPXXZZZZXC
β z

IV

 ,       (12) 

 
and  
 

ZZZZPz
 1

)( .          (13) 

 
The IV residual vector is given by (similar to (7))  
 

IVIV βXYU ˆˆ  .           (14)  

 
The a-posteriori variance factor is given by (6) using (14) and P=Pz. We notice that the ordinary IV estimator given 
by (11) is equivalent to the WLS estimator when its weight matrix P=Pz (cf. Eqs. (4) and (13)).  When all 

regressors are considered exogenous, then m  and (11) collapses to:  

 

YZZXβ  1}{ˆ
IV ,          (15) 

 
and its covariance matrix again by (12). 
 
 

4.2 The Weighted IV Estimator 
 
We discuss here only the simple case when all regressors are considered exogenous i.e., Eq. (15) is valid. If a 
weight matrix P of dimension n×n for the sales pairs is available, then (15) and (12) become respectively: 
 

PYZPZXβ  1}{ˆ
WIV ,          (16) 

 
112

0 ][   XZPZZZXC
WIVβ

)(ˆˆ
ˆ           (17) 

 
When there are endogenous regressors, the weighted IV estimator is equivalent to the Generalized Method of 
Moments (GMM) and it is discussed below.  
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5. THE GENERALIZED METHOD OF MOMENTS (GMM) 
 

The Generalized Method of Moments (GMM) was introduced by Hansen [1982] to overcome, among others, the 
worrisome problem of heteroskedasticity. In fact, the GMM estimator allows a consistent and efficient (minimum 
variance) estimation of the regression coefficients even in the presence of heteroskedasticity of unknown form 
[Hansen, 1982; Hansen et al., 2006]. The LS and IV estimators can be regarded as special cases of the GMM. 
 

The use of a weight matrix W for the exogenous regressors (i.e., of dimensions  ) in the minimization of the 

weighted quadratic norm of the residuals U (cf. Eq. (2)) gives the GMM as follows [Hansen at al., 2006]: 
 

YZZWXXZZWXβ  1}{ˆ
GMM .        (18) 

 
 
The optimal choice of the weight matrix W provides a minimum variance (efficient) GMM estimator. This optimal 
weight matrix that also eliminates heteroskedasticity is given by (ibid, 2006): 
 

11 )ˆ(ˆˆ   ZΩZSW ,          (19) 

 

where Ω̂  is a diagonal matrix of dimensions nn comprising the inverse estimated square residuals iû coming 

from a consistent estimator, e.g. from IV. Substituting (19) into (18) we obtain the efficient GMM estimator 
(EGMM) as follows: 
 

YZZΩZZXXZZΩZZXβ   111
)ˆ(})ˆ({ˆ

EGMM ,      (20) 

 
with an estimated covariance matrix for the regression coefficients given by  
 

112

0

  })ˆ({ˆˆ
ˆ XZZΩZZXC
EGMMβ

 .        (21) 

 
The estimated EGMM residuals and their covariance matrix can be written as: 
 

EGMMEGMM βXYU ˆˆ  ,          (22) 

 

])([ 1112

0 XXWXXWC   ˆˆˆˆ
ˆ 

U
.        (23) 

 

The a-posteriori variance factor in (21) and (23) is again given by (6) in which Û is from (22) and WP ˆ . 

 
Recapitulating, in order to obtain the EGMM estimator the iterative procedure is applied as follows: 
 

(a) Use the IV estimator given by (11) or (15) to calculate the regression coefficients IVβ̂  or WIVβ̂  and then the 

residual vector IVÛ given by (14). 

 

(b) Use the inverse square residuals from the IV estimator to form Ω̂ , 
 
(c) Use (20) to obtain the EGMM estimates along with their covariance matrix given by (21). 
 
(d) If desired, calculate EGMM residuals (cf., Eq. (22)) and then iterate EGMM estimator (go to step (b)).   
 



 

   

12 

The EGMM is consistent when arbitrary heteroskedasticity is present because of the presence of matrix Ω̂ . 

Matrix Ω̂  is formed from the square residuals and therefore reflects the random character of heteroskedasticity. 
This implies that the data sample we have at our disposal must be sufficiently long. Small datasets are not 
adequate and cause poor performance. If heteroskedasticity is in fact not present then the standard IV process 
may be more preferable [Baum et al., 2002]. 
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6. STATISTICAL ASSESSMENT OF THE RESULTS 
 

Once the WIV solution is obtained we can test it for reliability. This can be done in two stages: 
 

(a) test the significance of the solution vector WIVβ̂  as one entity, 

 

(b) test the significance of each individual member of vector WIVβ̂ . 

 

When testing vector WIVβ̂  as a single entity, the following statistic is formed [Vanicek and Krakiwsky, 1986]: 

 

m
y

WIVWIV )ˆ(ˆ)ˆ( ˆ ββCββ
1

β






,         (24) 

 

where the numerator is the quadratic norm of the difference between the estimated WIVβ̂  and a hypothesized set 

of values β  (see below), metricized (scaled) by the inverse estimated covariance matrix of the estimated 

regression coefficients. Statistic y is nothing but the average square distance of the regression coefficients from a 

hypothesized value and follows the ),;( mnmF  probability density function if WIVββ ˆ  is normally distributed. 

Once again, a specific significance level (usually =0.05) is invoked for the statistical test that defines 

parameter  of the F distribution. If   1,Fy  then the solution vector WIVβ̂  is statistically different from the 

hypothesized vector β and in our case it should not be trusted. Otherwise, the solution is overall statistically very 

close to β  and should be trusted.  

 

How do we actually select this hypothesized vector β ? There are many possible ways to determine the 

hypothetical values keeping in mind that β  should reflect the smooth variation of the regression coefficients.  It 

can be obtained by low pass filtering of vector WIVβ̂ . The low pass filter can simply be a moving average process, 

or a more sophisticated one with appropriate cut-off frequency not to attenuate seasonal variations that are in fact 
part of the signal. A three-month moving average or a Parzen weighting function [Jenkins and Watts, 1968] can 
be used to obtain the smooth values. A seasonal cut-off frequency may not be adequate however to effectively 
filter out spikes in the results. Other approaches are also possible. 
 

For the regression coefficients as individual members of WIVβ̂  it is important to test every one of them in context 

of the whole vector WIVβ̂ . In simple terms, this test examines whether the difference of every individual coefficient 

from its hypothesized value taken from β  is small enough and therefore is to be trusted. The difference jj  ˆ  

for every regression coefficient at epoch j is examined vis-à-vis the product of the estimated standard deviation 

of j̂ , namely 
j

 ˆ
ˆ  times an expansion factor )(mCa to account for the in-context nature of the statistical testing. 

The expansion factor is calculated from the chi-square distribution, and for large degrees of freedom (n-m> 40) 
and large number of unknown coefficients (m>40) the expansion factor approaches 3.56 for significance level 

=0.05 when the a-priori variance factor is unknown. Mathematically this is expressed as follows [e.g., Vanicek 
and Krakiwsky, 1986]: 
 

j

mCajj 
 ˆˆ)(ˆ                       (25) 
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If inequality (25) holds, then the estimated regression coefficient j̂  statistically close to j  and is to be trusted 

statistically. Otherwise, j̂  is very different from the hypothesized value and it is not to be trusted. In the latter 

case, coefficients that are not trustworthy may be eliminated from the set; they often appear as single spikes.  
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7. POST-BASE INDEX ESTIMATION 
 

In this section we describe the methodology of calculating post-base regression coefficients that are based on the 
estimates of the historical regression coefficients (pre-base coefficients). Since the pre-base regression 
coefficients are to be used in the calculation of the post-base coefficients we continue to work in the domain of 
regression coefficients rather than in the index domain. The transformation of the regression coefficients into 
indices takes place only in the end, after all statistical assessments and filtering of the coefficients have been 
completed. 
 
Usually, the historical regression coefficients contain high frequency noise that does not reflect market trends. 
High frequency noise means small rapid variations from month to month that need to be filtered out. The simplest 
low pass filter may be the three-month moving average, whether simple or weighted. In the latter case, the 
weights are the inverses of the variances of the regression coefficients (cf. Eq.(17)). The moving average process 
does not exhibit desirable characteristics in the frequency domain (ripple effects) [e.g. Jenkins and Watts, 1968; 
Bendat and Piersol, 1971] and other filtering algorithms such as the Parzen weighting function can be used. One 
important consideration when designing such a filter is its cut-off frequency. For instance, a seasonal cutoff 
frequency of 3-4 cycles per year will block monthly or bimonthly variations, whereas it will allow the slower volatile 
or seasonal variations that most probably reflect market trends to go through. 
 
The previously estimated regression coefficients are subsequently used as constants in the calculation of the 
post-base regression coefficients. Post-base regression coefficients are calculated on a monthly basis as new 
sales pair data become available. When sales pairs are collected for the current month, for which the regression 
coefficient is to be estimated, then the same approach of repeat sales methodology is applied (cf. Sections 3, 4, 
and 5). However, in the case of monthly coefficient estimates, data from rolling three-month periods, namely the 
current month and the previous two months, are used to calculate the regression coefficient of all three 
coefficients in a simultaneous fashion. Subsequently, and in order to offset any delays in the flow of data in the 
registry, the current month’s regression coefficient is taken as the average of the three months. The coefficients of 
the previous two months are not needed for further consideration and they are dropped. This moving average 
process provides a low pass filtering of the indices. In all the above averaging and/or filtering methods we can 
consider weighted estimates instead of simple averaging and/or filtering. In a weighted averaging scenario, 
weights are the inverses of the variances of the regression coefficients. Once the regression coefficients are final 
then their reciprocal value multiplied by 100 furnishes the final home price indices. 
 
Mathematically, the methodology of estimating the post-base coefficients uses the same regression Eq. (3), to 
form all required matrices i.e., X, Z, Y and P. The characteristic of design matrix X is that it now has only three (3) 
columns, corresponding to the three coefficients to be estimated (current month and the previous two months). If 

all regressors are exogenous, then matrix Z also has three (3) columns. In Eq. (3) the term kikP   is the product of 

the previous sale price ikP  and the historical regression coefficient k . Coefficient k  is a known “constant” 

estimated from pre-base calculations, which makes the term equal to kikP ̂  (independent variable), which is 

moved to the RHS of Eq. (3) to form the elements of matrix Y. Once all matrices are formed, they are cast into the 
regression coefficient estimator to calculate the coefficients of the current month plus the coefficients of the two 
previous months. It is clear that the monthly regression coefficients so calculated depend upon the regressions 
coefficients of the previous months only. This is in opposition to the pre-base calculations which provide 
coefficients that are dependent upon past and future coefficients. 
 



 

   

16 

8. CALCULATING THE NATIONAL COMPOSITE INDEX 

The national composite index is the weighted average of all six metropolitan areas considered in this study. The 
weights are based on the aggregate dollar value of dwellings retrieved from the 2006 Statistics Canada Census. 
Table 1, summarizes the aggregate value of dwellings per metropolitan area and the weighting factor (in percent) 
that is the normalized aggregate value by the total value of all dwellings. 

 

Table1: Summary of the 2006 Statistics Canada Census on the dwellings in the six metropolitan areas. The last 
column gives the normalized weight per city. 

 

 

* Ottawa - Gatineau (Ontario part only)  
 

Metropolitan Area Total Dwellings Average Value of Dwellings Aggregate Value Weight (%) 

Calgary 307,315 $ 381,866 $ 117,353,149,790 10.0 

Halifax 99,200 $ 212,942 $ 21,123,846,400 1.8 

Montreal 813,405 $ 244,417 $ 198,810,009,885 17.0 

Ottawa* 221,690 $ 294,536 $ 65,295,685,840 5.6 

Toronto 1,216,100 $ 403,112 $ 490,224,503,200 42.0 

Vancouver 529,090 $ 520,937 $ 275,622,557,330 23.6 
     

  Total $1,168,429,752,445  


